Fabrication and Characterization of Plasmonic Nanophotonic Absorbers and Waveguides
نویسنده
چکیده
Plasmonics is a promising field of nanophotonics dealing with light interaction with metallic nanostructures. In such material systems, hybridization of photons and collective free-electron oscillation can result in sub-wavelength light confinement. The strong light-matter interaction can be harnessed for, among many applications, high-density photonic integration, metamaterial design, enhanced nonlinear optics, sensing etc. In the current thesis work, we focus on experimental fabrication and characterization of planar plasmonic metamaterials and waveguide structures. The samples are fabricated based on the generic electron beam lithography and characterizations are done with our home-made setups. Mastering and refinement of fabrication techniques as well as setting up the characterization tools have constituted as a major part of the thesis work. In particular, we experimentally realized a plasmonic absorber based on a 2D honeycomb array of gold nano-disks sitting on top of a reflector through a dielectric spacer. The absorber not only exhibits an absorption peak which is owing to localized surface plasmon resonance and is insensitive to incidence’s angle or polarization, but also possesses an angleand polarization-sensitive high-order absorption peak with a narrow bandwidth. We also demonstrated that the strong light absorption in such plasmonic absorbers can be utilized to photothermally re-condition the geometry of gold nanoparticles. The nearly perfect absorption capability of our absorbers promises a wide range of potential applications, including thermal emitter, infrared detectors, and sensors etc. We also fabricated a plasmonic strip waveguide in a similar metal-insulator-metal structure. The strip waveguide has a modal confinement slightly exceeding that of the so-called plasmonic slot waveguide. We further thermally annealed the waveguide. It is observed that the propagation loss at 980 nm has been decreased significantly, which can be attributed to the improvement in gold quality after thermal annealing.
منابع مشابه
Analysis of dielectric loaded surface plasmon waveguide structures: Transfer matrix method for plasmonic devices
Related Articles Terahertz intracavity generation from output coupler consisting of stacked GaP plates Appl. Phys. Lett. 101, 021107 (2012) Operational lifetime improvement of poly(9,9-dioctylfluorene) active waveguides by thermal lamination Appl. Phys. Lett. 101, 013303 (2012) Operational lifetime improvement of poly(9,9-dioctylfluorene) active waveguides by thermal lamination APL: Org. Electr...
متن کاملNanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits
The fast development of plasmonics have greatly advanced our understanding to the abundant phenomena related to surface plamon polaritons (SPPs) and improved our ability to manipulate light at the nanometer scale. With tightly confi ned local fi eld, SPPs can be transmitted in waveguides of subwavelength dimensions. Nanophotonic circuits built with plasmonic elements can be scaled down to dimen...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملDesign and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring
In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...
متن کاملSlow Light in Nanophotonic Materials From ‘Trapped Rainbows’ to Quantum Memories
We analyze and compare the salient features of slowlight propagation in a variety of nanophotonic structures, including metamaterial, plasmonic and photonic crystal waveguides. We discuss the possibility of stopping light in nanoplasmonic metamaterials, and coherently storing quantum information in semiconductor quantum dot ensembles. Keywords––slow light; metamaterals; plasmonics; photonic cry...
متن کامل